I finished this course last week, and thought I would post my thoughts before I forget them.

I was in Professor Roy Sanford’s section, and I HIGHLY recommend him. He is an extremely experienced practitioner, and very knowledgeable of statistics and in using R for statistical analysis.

The course is focused on several aspects – learning basic statistics, learning R to perform statistical analysis, and engaging the students to participate in discussions that are pertinent to the material being learned.

**Learning Statistics**

The core text for the course is *Ken Black’s Business Statistics For Contemporary Decision Making, 8th Edition.* It is a loose leaf binder text so you can remove the sections you are studying, which makes it nice. It is a very down to earth text, with plenty of examples and problems. Their is a companion website called WileyPlus that has videos to watch and a variety of problems/exercises.

A second supplemental statistical text is *Rand R. Wilcox’s Basic Statistics: Understanding Conventional Methods and Modern Insights*. There are selected readings which highlight some contemporary issues. Not as easy to read as Black’s text, but still informative.

**Learning R**

The coursework is presented using R. You don’t HAVE to learn to use R, but you would be an **idiot** not to take advantage of this opportunity. There is a great deal of effort putting into devising the curriculum to help you learn R. This is well thought out, and I feel very confident that I have obtained a good working knowledge of R on which to build. I was astounded to read a comment on the LinkedIn group – Networking Group for Northwestern University’s MS in Predictive Analytics Program – from a previous student who took this course, who commented he didn’t really learn any R because he didn’t do any of the R reading or assignments. To me, learning R was just as important as learning the statistics. Plus I don’t know how you could do the Data Analysis Projects without learning R. Learning R is accomplished through reading various text’s, watching weekly video’s on R produced by Prof. Sanford, and then doing exercises. Plus there are R resources and lessons, including links to Lynda.com.

I did the work in both RStudio and in a Jupyter Notebook using the R kernel. The Jupyter Notebook was my favorite way of doing the assignments because I could refer back to them. But some things are way easier to do in RStudio, like installing packages and data sets, so sometimes I switched between the two. See my other blog posts for information about Jupyter Notebooks.

The first R text is *Winston Chang’s R Graphics Cookbook*. This takes you through the R basics and gets you up to speed quickly visualizing data. There is a little bit about using the base plotting function in R, but most of the book is about visualizing using the **ggplot2** package. If you follow the exercises, you will get good at plotting and visualizing data. You will learn scatter plots, line graphs, bar graphs, histograms, box plots (a lot – I finally understand what to do with a box plot), functions, QQ plots (I finally understand these as well). All of these are extremely helpful in what you will spend a lot of time learning, Exploratory Data Analysis (EDA).

The second R text is *Jared P. Lander’s R for Everyone: Advanced Analytics and Graphics*. This dives more deeply into using R for things other than data visualization and graphics, although it includes this as well. This is a very easy to read and follow text.

The third R text is *John Verzani’s Using R for Introductory Statistics: 2nd Edition*. This book is a very deep dive into R’s capability to do statistical analysis. Although very detailed, it is understandable with great examples.

The last R text is downloadable from the site, *Sarah Stowell’s Using R for Statistics.* This is also a very practical book on both statistics and visualization.

Don’t be overwhelmed by the number of text’s and reading, it is doable, and I would do it all. If you do that, you will not be able to say you did not get your money’s worth.

In addition there are beginning videos and lessons about learning R, including links to Lynda.com. There are weekly Calculations with R assignment, which include a video with examples. There are exercises with these weekly assignments as well. Finally there are R lessons which take you through learning R in an organized manner.

**Sync Sessions and Videos**

Professor Sanford holds a sync session every other week. These are extremely informative and helpful. You don’t have to watch live, but you need to watch later. The sync sessions in Predict 400 were optional and you could get by fine without watching them. Not the case here. You will learn a lot from these.

The same holds for the videos he has created to go along with the weekly R exercises. These are must watch videos.

**Data Analysis Projects**

There are two data analysis projects. You will learn how to apply what you are learning to a hypothetical data analysis project. These are pretty challenging, but VERY worthwhile. These show the applied focus of the MSPA program, and I found them beneficial. The first one really focused on doing some exploratory data analysis. The second one was twice as long as the first, and you applied what you learned later in the course, including the creation of a linear regression model. You will definitely want to start early on these, and put in the effort to do these correctly, as together they constitute 2/5’s of your grade.

**Bi-weekly Tests**

There are 4 bi-weekly tests which are very fair and doable. Together they constitute 1/5 of your grade.

**Final Exam**

The final exam is also very fair and doable. Much easier if you have paid attention to learning R, as you can use R to do the exam. This is 1/5 of your grade.

**Communications and Discussions**

There are Communications discussion sections set up for statistics and R. You can post a question anytime in either and get a rapid response from either Prof. Sandford or the R TA. Our R TA was Todd Peterson, and he was extremely knowledgeable, helpful, and responsive.

Every week there are two discussions around topics you are learning. These are student driven, and if taken seriously, you can learn a lot from each other. There are some extremely bright and talented students in these classes who have great real world experience in a variety of sectors. The final discussion section is a recap of what you learned that week, and Prof. Sanford participates in that discussion.

**Overall**

I spent between 20-30 hours per week doing the coursework. You wouldn’t have to spend that much time, especially if this material is not new for you. But I wanted to really learn the material, not just pass the class.

I really enjoyed this course on many fronts. I found learning about statistics and R together was very complementary. In fact, I cannot imagine doing any kind of statistical analysis without using a language such as R. I am now trying to recreate what I learned in R using Python. I really feel as if I got my money’s worth.